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AIIItract-Plane-strain numerical solutions have been obtained for the power-law creep relaxation of crack tip
stresses subsequent to an initial elastic response. Explicit time integration is coupled with an initial-strain, finite
element calculation. For cost effective, automatic time step control, the Irons-Treharne-Cormeau stable time
step estimate is used to restabilize the calculation between steps 5-S0 times larger. This finite element scheme is
readily adaptable to realistic (and complicated) creep flow relations. Numerical results are presented for the
plane-strain shallow Mode Itensile edge crack under constant applied load and creep exponents of3and 10. The
calculated short-time amplitude of the singular HRR crack tip field under small-scale creeping conditions
determines stresses that are within 1.5% of those predicted, using the elastic stress intensity factor K1 with the
Riedel-Rice approximation. This precedes alonger time transition to asteady-state value that is Jiven in terms of
the path-independent integral Cf.Time-dependent crackopeningdisplacementsand velocities and thegrowth of
regions where creep strains exceed the elastic strains are also presented.

I. INTRODUCTION
At elevated temperatures creep cracking of polycrystalline metals may progress by both
pre-strain mechanisms and crack-tip mechanisms that are confined within the so-called
fracture process zone [1,2]. Pre-strain mechanisms include cavitation, strain-induced over-aging
and grain boundary sliding and cracking ahead of the main crack. Crack-tip mechanisms include
grain boundary cracking from the existing tip, corrosive film breakage and corrosive tunnelling.
For a particular structural component the inftuence of nominal loading on creep crack growth is
through the time-dependent stress and displacement fields that set boundary conditions on the
fracture process zone, and any prior damage of material entering this zone. In this paper we are
concerned with numerical methods for calculating these continuum fields without regard to the
actual fracture process. The material behavior is idealized to include elastic and secondary
creep response, but the methods should also apply to problems involving structural materials
for which primary creep often contributes significantly to the total creep.

Recently, Riedel[3] and Riedel and Rice[4] have given solutions for the transient singular
fields at the tip of a stationary crack under creep conditions. When the fracture process zone is
embedded within the singular field, then a one-parameter, time-dependent amplitude factor
scales the influence of geometry and nominal loading on crack growth. On the other hand, when
the singular field dominates over a region that is small compared with the fracture process zone,
then a more complete description than the asympototic, singular one is required (see Parks [5]).
In either case, for various geometries and loadings, numerical soutions connecting the remote
and crack tip fields are needed since complete analytic solutions are seldom found.

We begin Section 2 with a discussion of the creep relaxation problem under constant load
and a review of the singular crack tip field. In Section 3, the cost-eft'ective Zienkiewicz­
Cormeau[6,7] explicit time-integration scheme coupled with linear elastic finite element solu­
tions is outlined. Automatic time step control and occasional leaps in time are also in­
corporated.

Numerical results are presented in Section 4 for the stress, strain and .displacement fields
around a sballow edae-c:rack under plane-strain and constant Mode I tensile loadinl conditions.
Creep exponents of " =3 and 10 are considered. Calculations for" =10 required much shorter
time steps and therefore much greater cost than those for n = 3. Comparisons are made with
the short-time Riedel-Rice [4] approximation for the transient amplitude of the singular field.
For times less than roughly one tenth the time it takes for nominal creep strains to equal
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nominal elastic strains, the elastic stress intensity factor K1 is the relevant geometry and
loading parameter that, along with time, sets this amplitude. For much longer times the
path·independent integral C* is the relevant parameter. Also presented are the time-dependent
crack tip and mouth opening displacements and velocities and the growth of regions where creep
strains exceed the elastic strains.

1 PROBLEM STATEMENT
Elasticity and power law creep

The total tensile strain rate i, expressed as the sum of the elastic and creep strain rates, is
given in terms of the uniaxial stress 0' and several material constants: Young's modulus E, unit
stress 0'0, creep rate to at the unit stress, and creep exponent n:

(2.1)

The constants i o and 0'0 are not combined into one constant (B =ilO'o" is often used) to
emphasize dimensional consistency throughout. A generalization of eqn (2.1) for multiaxial
stress states in terms of the deviatoric components of strain rate fiji and stress ~i and the
effective tensile stresst

is given by

:J 2(1 +v).:J :!. (-/ )"-I.JI
r:ji = -E-- CTji +2 Eo 0', 0'0 Vii 0'0,

where 1/ is Poisson's ratio. Dilatation is purely elastic:

Ejj =C~2p) O'jj.

The initial-boundary-value problem
The rate forms of the equilibrium and strain-displacement equations are respectively,

cTii.i = 0,

i j · =12 (Ii· .+Ii· .)1 I.] 1. ,

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

where Uj are the displacement components.
InitiallY, the plane-strain, edge-crack configuration shown in Fig. I is free of stress and

strain. At time t =0 a nominal tensile stress 0'22 =UN (Mode I) is suddenly applied on the
circular boundary and thereafter held constant. The circular boundary centered at XI =-a,
X2 = 0 has a radius equal to 21a that was chosen to approximate an edge crack in a half space.
Both the crack - a EO XI ~ 0, X2 =0 and the surface XI =-a are traction free. Symmetry of this
Mode I configuration allows us to consider just the domain ;(2"" 0, with the boundary conditions
on X2 =0, XI> 0, given by U2 =0'12 = O.

Upon sudden loading, the instantaneous response is purely elastic, and the crack tip field is
given by linear elastic fracture mechanics. With the load held constantsubsequel1t creep
deformation causes a relaxation of the crack tip stresses until, as t -'00, a steady-state stress
distribution is reached (see Leckie and Ponter[8]). Higher creep rates at higher stresses cause a
faster relaxation in the crack tip region than in the nominal field. Our finite element results for
the shallow edge-crack show that the singular crack tip region is fully relaxed in approximately
1/10 the time it takes for creep strains to equal elastic strains in the nominal field.

Relaxation scaling relations
The solution to eqns (2.2)-(2.6) with the initial and boundary conditions (constant applied str­

ess) stated above depends on the magnitude of loading O'NtO'O' the crack length a (that is taken to
scale all specimen dimensions), as well as the material Constants E, P, nand £0. For numerical
purposes we need only consider variations in nand P. The solution for arbitrary values of

tSummation over repeated indices is implied.
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Fig. I. Shallow edge-crack under plane-strain and constant nominal tensile stress /Tn = /TN loading (Mode I)
conditions.
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uNIUo, a, E and Eo can be found from anyone solution using appropriate scaling relations. A
natural time scale is

u,JE !J!..
tN - 'f . I )" - . c' (2.7)

EO\UN/UO EN

which is the time required for the creep strain to equal the elastic strain under a uniaxial tensile
stress UN' In plane-strain tension times somewhat greater than IN are required for the
equivalent creep and elastic strains to be equal in the nominal field. This will be discussed in
connection with the numerical results of Section 4.

Consider two solutions to eqns (2.2H2.6) that are associated with the same values of nand
JI. Let superscripts J and 2 distinguish values of UN' a, E, EN

c
:;; EtAu,Juo)" and 'N associated

with each solution. Then one can verify by substitution into eqns (2.2H2.6) that the second
solution can be obtained from the first by the following scaling:

U (2) (a(l) I (I) )(2) _ N (I) N
Uji (Xb I) - --m x Uji ::m Xb Tmt t,

UN a N

E• cal (a(1) I (1) ).(2 N'(I) N
Eij ) (Xb t) = 7"C"l X Eji :m Xb Tm, () t ,

EN a N

a(2) E' c(21 (am I (I) )'(2) _ N '(1)
Uj (Xt, t) - am (NeW X Uj am Xb~ t •

(2.8)

(2.9)

(2.10)

Substitution of eqn (2.8) into eqn (2.3) reveals tbat the elastic strain-rates and the creep
strain-rates individually scale with the total strain-rates as given in eqn (2.9). Time intearation of
eqn (2.9) for constant applied stress and the appropriate scaling for the initial elastic strains
gives

(2.11)
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(2.12)

Review of crack tip analysis for power law creep
At the tip of a stationary Mode I creep crack in plane strain (E33 = 0), the asymptotic stress

field is of the HRR (Hutchinsoll-Rice-Rosengren) type [4]. In terms of the crack-tip polar
coordinates rand 0, a known nondimensional function aij(O; n) that is normalized with the
maximum over 0 of (3/2)a i/i'ij = 1, a known nondimensional function I. in the range 3.8-6.0, and
a time-dependent amplitude C(t), for t >0 as rla-+O

[
C(t) a]I(n+o _

airRR (r,9,t)lao= -'-1- aij(O;n).
aoEoa. r

On any closed path r surrounding the crack tip that lies within a region where the creep
strain rates given by eqn (2.3) greatly exceed the elastic ones (which exists asymptotically for
t > 0 as rla-+ 0)

(2.13)

(2.15)

(2.16)

(2.17)

Integration on r is in a counterclockwise direction around the crack tip. As t -+ cc when
steady-state conditions require that aij = 0 everywhere, C(t) -+ C* and the integral in eqn (2.13)
is path independent everywhere [4, 9]. Equation (2.13) is evaluated numerically from the finite
element results to obtain values of C(I) reported in Section 4.

For short times after an initial elastic response creep strains will dominate elastic strains
only within a small crack-tip region (analogous to small-scale yielding in elastic-plastic
fracture). Under these conditions, Riedel and Rice[4] found that C(t) is given in terms of the
elastic stress intensity factor K1[4] That is, under constant applied stress and for times much
shorter than a transition time tT given by

t
T

= (1- l/2) Kl , (2.14)

(n+l)EC*
then

C(l) (1- lI
2
) Kl (. t)-l

--::>= Eo
ao€oa (n + 1) Eaoa .

Riedel and Rice[4) derived eqns (2.14) and (2.15) based on an approximate matching of the
singular elastic and creep fields that assumes path independence of the J integral under
small-scale creep conditions. With the standard normalizations K1 = KJUN ('V1Ta)and c* =
C* q~NC a, eqns (2.14) and (2.15) with eqn (2.7) become

17'(1 - l/2) K2t - 1 t
T - (n + 1) C* N,

2 • 2
C(t) =17'(1- l/ ) K 1 (tft r1
a~Nca (n + 1) N'

3. FINITE ELEMENT METHOD
An incremental finite element scheme has been developed that utilizes an automatic time

stepping algorithm. Time integration is done explicitly using an Euler method that requires only
an initial-strain, elastic finite element calculation[6]. The initial strains at each spatial in­
tegration point are the increment of creep strains ~Eq accumulated in each time step ~t and
estimated from the creep strain-rate at the beginning of the step, ~Eij =~t x €~{t). Complicated
flow relations are easily adapted to explicit finite element codes.

The finite element stiffness matrix[K] is then elastic and needs to be assembled and factored
only once. With{~u} denoting the vector of nodal displacement-increments, {~F'} the vector of
applied nodal force-increments and {~FC} the vector of equivalent creep force-increments, the
linear finite element equations to be solved for each time step are [6]

(3.1)

The contribution of each element to Ape is proportional to AE~Ec, where A is thl" element
area. Equation (3.1) was assembled and solved using the ADINA finite element code[10].
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Finite element mesh
The final mesh used to generate the results presented in Section 4 is comprised of 216

8-node isoparametric elements. Each 8-node element has straight sides with the side nodes at
the mid-points between the corner nodes. Eleven rings of elements are radially focussed at the
crack tip, each with a circumferential extent lie =1J'/12. The radial coordinates of each ring
from the crack tip are ria =0.01, 0.013, 0.018, 0.026, 0.038, 0.057, 0.087, 0.135, 0.210, 0,331,
0.529. The inner, radially focussed part of the mesh is connected to the outer portion of the
mesh shown in Fig. 2. This 716 node mesh results in 1380 degrees of freedom for which eqns
(3.1) are solved.

The crack tip elements are formed by collapsing 3 nodes into 1along one side of the 8-node
element with the other side nodes remaining at the mid-points. Each of those 3 nodes can
displace independently so that the interpolation function exhibits a ,-1 singularity in displace­
ment derivatives. This can be shown following the approach of Barsoum (11). This is not too
bad an approximation to the actual strain singularity of ,-11/(/1+1) associated with the HRR fields.
On the other hand, this may not effectively model the elastic ,-112 singularity that exists initially
(t =0).

When increments of creep strain dominate increments of elastic strain, the displacement
increments will be nearly incompressible. To avoid problems associated with incompressible
deformations, we have used reduced (2 x 2) Gaussian integration within each 8-node element
(Malkus and Hughes [12]).

TIme-stepping algorithm, including leaping
Euler integration methods for differential equations are conditionally stable, while too large

a time step can lead to unacceptable errors and even numerical overflows in the computer
solution (see Ref. [13] for example). This situation is especially troublesome for so-called stitt
differential equations, such as those that arise in power-law creep (especially for large n). Time
steps must be much shorter than one would expect from the solution, including, for example, the
stress relaxation even at points near the crack tip.

The explicit time integration (eqn 3.1) will be stable if the increment of creep strain at any
integration point is at most roughly 2/n times the elastic strain at that point[7, 14]. An estimate
of an allowable stable time-step lit, for power-law creep has been given by Cormeau [7]. In
terms of the maximum effective stress cTmax , sampled over all integration points

(3.2)

~o+-I------200 ----------l

Fig. 2. Portion of the finite element mesh outside the eleven rings of radially focused elements around the
crack tip.
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or, with eqn (2.7)
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4(1 + II)

I1tsltN =3 (- / )"-1'n U m•• UN
(3.3)

Except for a factor of 2(1 + II )/3 - I, the result in eqn (3.2) can be derived from a
one-dimensional, prototype, ordinary differential equation. This derivation is given in the
Appendix.

At the end of each time step only the crack tip elements are sampled to determine um•• and
the estimatel:!ts for the next time step is calculated from eqn (3.3). For our constant load
problem, the crack tip stresses are continuaHy relaxing (decreasing) from the initial elastic
values so that I:!ts tends to continually increase. In practice, time steps many times ~ts can be
taken if previous discretization errors are small. An intermittent leaping technique also proves
effective where one or two steps 5-50 times ~ts are taken foHowed by several shorter steps to
restabilize. Our experience in generating the results summarized in Section 4 revealed that larger
leaps relative to I:!tscould be taken for larger values of creep exponent n. For n = 3,I:!t = (5 - 10)l:!ts
while for n = 10, I:!t::: (to - 50)l:!ts was used for leaping after the very short-time transient
response.

A test problem
The effectiveness of incorporating the r- 1 crack tip elements, the reduced integration, and

the time-stepping algorithm was assessed by studying an HRR crack tip problem [15]. Within a
semi-circular domain, a radially-focussed (6 x 6) mesh was used to model the crack tip. On the
semi-circular boundary HRR boundary tractions, corresponding to the stresses in eqn (2.12),
are applied at t ::: 0 and held constant. This problem provides a useful check of our numerical
procedure since the exact steady-state solution for the stresses is known to be eqn (2.12). With
the estimate ~ts controlling the time-step size and occasional leaping, the transient response
was smoothly calculated, and for long times steady state conditions (u:::.: 0) were observed.
Both the angular and radial variations of the steady-state stresses were in good agreement, even
given the coarseness of the mesh, with the HRR distribution of eqn (2.12). When excessively
large leaps in time were attempted, for example with n ::: 5, ~t/~ts ::: 2~50, oscillations in the
solution and even numerical overflows resulted. The details of this calculation will be reported
in a separate paper.

4. NUMERICAL RESULTS
Some finite element results will now be presented for the edge crack (- a < XI < 0) of Fig. I

under plane strain (En::: 0) and constant nominal stress U22 =UN applied on the circular
boundary at t =O. All results are for Poisson's ratio II::: 0.3, UN ::: Uo::: EI2000 and either n ::: 3
or 10.

Initial elastic response
At t ::: 0 the instantaneous response is elastic. The elastic stress intensity factor computed

from the J integral [16) is KJ = 1.14 UN VC'lTa), which is 1.5% higher than the exact result for the
half space, KJ ::: t.l2 UN V( 'ITa). The J integral was evaluated on several circular paths
connecting integration points in the radially focussed crack tip region. This 1.5% discrepancy is
due, in part, to the finite extent of the mesh and to the ,-1 interpolation of crack tip strains
instead of r-1I2 •

The highest effective stress, Um... is always at one of the integration points nearest the crack
tip. For our mesh, these integration points all lie on the semi-circular arc ria::: 0.002. At t ::: 0,
Umax/UN ::: 13.9 at the integration point ria = 0.002, 8::: 63°. From the closed-form angular
variation of the elastic, singular crack tip stresses (with 11= 0.3), U is maximum at 8 ::: 87°, while
U at 8 ::: 63° is within 7% of that value.

Initially, with all material and loading parameters except n the same, the stable-time-step
estimatel:!ts decreases significantly with increasing n (eqn 3.3). For instance, from eqn (3.3)
with Umax/UN ::: 13.9, at t ::: 0, I:!ts(n ::: 10)/l:!ts(n ::: 3) "" lO-s. Stability initially requires small time
steps (which makes constant time step algorithms impractical) that steadily increase as um•• (t)

decreases.
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Time steps
The initial transient response for n = 3 was calculated with time steps of At/At, = 1 and 2.

After about 10 steps when tltN > 0.2 repetitions of At/At. =5,5,1,1,5,5,1,1, etc. produced
stable calculations and rapid (computer time) advance to steady-state conditions.

For n=10, initial steps of At/At. =1-3 were taken. After the first ten steps and within
1O-'~t//N~10-'" repetitions of At/A/.=5,5,1,1,5,5,1,1, etc. produced stable calculations.
Thereafter (t!tN > 10-4) very large leaps were taken followed by both short steps to restabilize
the highest stressed regions and somewhat longer steps to restabilize the lower stressed regions.
This scheme involved repetitions of At/At. = 50,1,1,5,5,1,1,5,5,1,1,50,1,1,5,5,1,1,5,5,1,1,
etc.

From calculations involving creep exponents of n =3, 5 and 10 we found that as n
increases, so do the allowable leaps At/At. > 1that produce stable calculations. Affordable tests
for maximum allowable leaps were easily made using a restart option that was incorporated into
our finite element code. All the information (e.g. nodel displacements, and integration point
stresses and creep strains) required to carryon time integration was stored before each large
leap. When subsequent steps showed unacceptable oscillations or an instability, the solution
would be continued from the step before the leap.

Creep crock tip fields
Figure 3, for n =3, shows the monotonic relaxation in 25 time steps of the amplutude of

the crack tip field C(t) in eqn (2.12), numerically computed from its integral representation
given in eqn (2.13). Also shown is a comparison with Riedel and Rice's short time ap­
proximation given by eqn (2.17). Valeues of C(t) in Fig. 3 were obtained by evaluating eqn
(2.13) and finding it path independent to within one percent on at aleast 2 or 3 paths closest to
the crack tip. Very short-time (tltN =10-$-10~ values of C(t) for n = 3 could not be found
from eqn (2.13) since the region, where creep strain-rates dominated the elastic ones was to
small relative to the finite element mesh. For somewhat longer times, C(t) was still path
dependent on all paths chosen, but values were determined based on an extrapolation of C(t;
path radius) to a path radius equal to zero. This technique reproduced the initial lit decay in
C(t) of eqn (2.17), that smoothly connected path-independent values at larger t. As time
increases, so does the region around the crack tip within which C(t; path radius) is nearly path
independent. For n =3, at tltN =0.025, C(t) computed from the Riedel-Rice approximation,
eqn (2.17) with Xl = 1.14 is 6% higher than the numerically computed (path independent) value
from eqn (2.13). At tltN =2.5, Clu~Nc a=4.10. With eqn (2.16) this provides the estimate of
ItItN = 0.23.

The relaxation of U_JUN for n = 3 is also plotted in Fig. 3. For all tltN >0.005 this
maximum occurred along (J =78° at ria =0.002. From the angular variation of the HRR stress
field, for n = 3 U is maximum at 8 =95°, while uat 8=78° is within 3% of its maximum. These
numerically computed values of Umax/UN are the ones that limited 40/. in eqn (3.2). Note, for

20

16

12

n • 3. (TN • E/2000. /I' 0.3

-- Finite Element

8 \ '-: -- Riedel- Rice (eqn 2.17)

4 ' ...~------- '\.
Umo./ (TN

0.5 1.0 1.5

t/tH

Fia- 3. Relaxation for /I '" 3 of the amplitude of the crack tip field C(I) oblained from the: finite element
results and a comparison with eqn (2.17). Also sbown is the relallltion of U.../tTN sampled at the

mte....tion points.
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example, that a factor of 2 decrease in elmax when tl tN = 0.05 corresponds to a factor of 4
increase in !1t,. The steady-state value (t~co) of elma.IUN =4.28 for our mesh.

Relaxation to steady-state creep from the initial elastic field for n = 10 requires significantly
smalIer time steps than the n =3 case. RecalI that at t =0, !1t, (n =10)/!1t,(n =3) "" 10-5

• Figure
4 includes a plot of C(t) for n =10 and a comparison with eqn (2-17). To reach tltN=0.66, at
which time elm..IUN = 1.77 and !1t,ltN"" 10-3, required 184 time steps. The lIt decay of C(t),
which is exact for short times, provides a useful check of the numerical accuracy. For short
times (tltN= 10-5 -10-4

), eqn (2.17) determines a value of C(t) that is roughly 10% higher than
the numericalIy computed value using eqn (2.13). At tltN= 0.66, Clu~Nc a =4.31. With eqn
(2.16) this provides an estimate of tr/tN= 0.08. Also shown in Fig. 4 is the relaxation of iimax/uN
that limited !1t, in eqn (3.3). For all times plotted, this maximum occurred in the range
78°~ 8 ~93°.

Crack openings
The rate of crack-mouth opening 6. =U2(XI =-a, X2 =0, t) and a measure of the rate of crack

tip opening B=U2(X. =- O.Ola, X2 =0, t) are shown in Figs. 5 and 6 for n =3 and 10, res­
pectively. (A measure of crack opening displacement that is often used in time..independent
elastic-plastic fracture is u2(r, 8 = 180°) at r = U2' Under steady-state creep conditions the rate
of change of this measure is not constant, therefore it is not incorporated here.) InitiallY, the
high crack tip stresses cause a faster rate of crack tip opening as compared with the rate of
crack mouth opening. Subsequently, as the crack tip region approaches nearly complete
relaxation, 6. exceeds B. For n =3, at tltN=2.5, BlaENc=0.72 and b.laENc=2.42. For n =10, at
tltN=0.66, BlaENc= 1.38 and 6.laENc=2.56.

The crack mouth opening !1 =U2(XI =-a, X2 =0, t) and crack tip opening 0 =
U2(X. =-O.Ola, X2 =0, t) are shown in Figs. 7 and 8 for n = 3 and 10, respectively. The initial
(t =0) elastic displacements!1t = 1.35 x 10-3 a and Ot =1.51 X 10-4 a are used for normalization. At
tltN= 0.66, which is roughly the time when the magnitude of the nominal creep and elastic
strains are equal, for n =3, olot = 3.44 while the observable. !1/!1t = 1.70. At this same nor­
malized time for n =10, olot =7.18 and !1/At =1.77. This reveals the greater crack tip defor­
mation, relative to far field deformation, for materials with higher creep exponent n. At
tltN=2.5 for n =3, olot =7.84 and !1/!1t =2.56.

Creep zones
The creep-zone bundary is defined as the locus of points encircling the crack tip where the

equivalent creep strain i C equals the equivalent elastic strain it, with (i = (2/3 E1j E1j)1/2). This
definition, which is arbitrary as compared with plastic zones associated with a yield criterion,
has been used by Riedel [3] and Riedel and Rice [4]. Creep zones propagate outward from the

n : 10

CTN: E/2000

v: 0.3
2

4

6

8

10 r----:---------------,

'\..',
" log (CICT N £~ 0)

~!-- Finite Element

\~ -- RIedel-Rice

_ I -------",'" (eqn 2.17)
CTma • CTN ,~

"~
'"

~II -9 -7 -5 0

log (I/IN)

Fig. 4. Relaxation for n =10 of the amplitude of the crack tip field C(l) obtained from the finite element
results and a comparison with eqn (2.17). Also shown is the relaxation of u....fuN sampled at the

integration points.
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6r;-----------,

5 n • 3 • (TN' £/2000. /I' 0.3

4

3

2

" /6/0E~-- ...... _---------

00 0.2 0.3 0.5

I/IN

Fig. S. Relaxation for II ... 3 of the rate of crack mouth openiq A... U2 (XI'" -a, %2'" 0,/) and rate of aack
tip openm, 8... Uz<XJ'" -O.Ola, X2 .. 0, fl.

6r------------,
• (TN' E/2000

/I • 0.3

2

4

3

5 \

\
\
\
\

\ .
\ IOo(8/a(~)"//\

• I 'C \
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-8 -7 -6 -5 -4 -3 -2 -I 0

log (fIlM)

rll.6. Relaxation for II ... JOofthe rate of crack mouthopenilllA ... U2(%1 ... - a, X2 '" O,/)andrateofcrack tipopeniq
6... ';2(XI ... -0.01 a, X2'" 0, fl.

4,--------------,

3

2

n • 3 , (TN • £ /2000

/I' 0.3

-----\-----------
6/6e

°0 0.2 0.3 0.5

!fIN

Fia. 7. For II'" 3, total crack mouth openina 4 and crack tip openiq 6, each normatized by the initial
elastic values 4. and 6.. respectively.
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sf-
I

n ~ 10 , II ~ 0.3

0'1'1 ~ E!2000

O'---'---'---'---'-",-----'---'--.J
-8 -1 -6 -5 -4 -3 -2 -I 0

log (f /tN'

Fig. 8. For n "" 10, total crack mouth opening Aand crack tip opening 8. each normalized by the initial
elastic values A, and 8.. respectively.

crack tip as time increases. A linear interpolation of the strains at the finite element integration
points is used to construct smooth boundaries.

The time iN when, under plane-strain tension, the creep zone extends to the nominal field,
Le. ~c(iN) == EN'(iN), is greater than the uniaxial tension transition time tN under the same
maximum principal stress UN. For plane-strain tension (U22 == UN, E33 =0) one can readily show
using the elastic stress-strain relations that aN =UN Vl- ii + ii2< UN, where ii(t) is an elective
Possion's ratio, Le. U33(t) =PUN' Similarly, EN' =(2/3) (l + ii) aJE. At t =0, ii == Jl =0.3 for our
results so that aN =0.889 UN and EN' =0.770 uJE, whereas at t =00, ii =0.5so that UN =0.866
UN and EN' == 0.866 uJE. Now. for Jl =0.3, if we take a long time value of iN' =0.85 uJE and
a mean value of UN =0.86 UN' then from EN' =ENc =EO(UJuo)" iN and eqn (2.7) we find
tN/tN "'" 0.85/0.86", which equals 1.3 for n == 3and 3.8 for n =10. These estimates agree well with
our numerical results.

Figure 9 shows short-time creep zones for n == 3 and n == 10. These zones that propagate
roughly with a self-similar shape (resembling the time-independent plastic zones under small­
scale yielding conditions, e.g. Shih[17] Rice and Tracey[18]), are extended further in front of
the crack tip than the small-seale-creep zones approximately constructed by Riedel and Rice [4].

Shorf -time
Creep Zones

O'N = [/2000

v = 0.3

--- n:3
-- n=IO

l:.
1. :=:====.......__~"'.....
T f----- 0-----1

t/IN =0.27
/

Fig. 9. Short-time creep zones where j' > j' for n '" 3 and 10.
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Their self·similar zones result f~om the lIt relaxation of C(t> in eqn (2.15) and an approximate
matching of the creep and elastic singular crack tip fields.

The maximum extent of the creep zones in Fig. 9 is roughly along the ray 8 =W'. At a given
normalized time the maximum extent of these zones increases with increasing n, while for a
given extent the maximum width of these zones decreases with increasing n.

Long-time creep zones for n =3 are plotted in Fig. 10. Up to tltN =1.3 == iJtN, the creep
zones propagate with a more or less self-similar shape. Thereafter the zones approach the
circular boundary and loose their self-similar shape. At tltN=1.6, i C > i~ everywhere except
within two narrow regions: one above and below and one directly in front of the crack.
Finally, at t/lN = 2.5, i C > i~ everywhere except in wedge shape regions above and below the
crack.

Figures II and 12, for n =3 and 10 respectively, are plots o( the radial variation of the
equivalent creep strain along two rays: one ahead of the crack, fJ = 3° and the other at the
maximum extent of the creep zone, fJ =57°. At the times tltN =0.66 and 2.5 for n =3, straining
along 8=57° is roughly an order of magnitude more intense than straining along fJ =3° for
0.01 :so ria"," 0.5, whereas from the analytical HRR solution, as ria -+0, iC(fJ =Sn:::
35 x iC(fJ =3°). The nominal creep strains (or n=3 at tltN =0.66 and 2.5 are iNC =0.00023 and
0.00082, respectively. For n =10, at tltN=0.66 when iNC =0.0001, straining alsong fJ =57° is
roughly 1-2 orders of magnitude more intense than straining along (J =3° for 0.01 :so ria :so 2.0,

Long - time Creep Zones

n =3 I II = 0.3

if> i C

at
tltN • 2.5

Fig. 10. Long-time creep zones where c > i' for n = 3.

-1....------·------,
n 0 3. (TN 0 E/zooo. 11 0 0.3

t ItN • 0.66

0.1 0.2 0.3 0.4 0.5 0.6

ria
F'1I. II. Radial variation of equivalent creep strain along two rays for n =3 at diN =0.66 and 2.5.
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Fig. 12. Radial variation of equivalent creep strain along two rays for n = 10 at IIIN = 0.66.

and as ria ~O, €C(6::: 57°) == 20 x €C(8::: 3°). Both Figs. 9 and 10 show the existence of a region
directly ahead of the crack, 6 == 0 and ria 'a 0.1, where the accumulation of creep strain is
slower than that in the nominal field.

5. DISCUSSION
Explicit time-integration coupled with automatic time-step control and occasional leaping

has proven effective in calulating the transient fields around a crack tip even when stresses at
the spatial integration points associated with the finite element discretization vary by more than
an order of magnitude. Stability requirements, on the other hand, show a trade-off between the
allowable time step and spatial refinement; that is, as the crack-tip element size is decreased for
accuracy, the stresses at the integration points nearest the crack tip increase and ~t, (eqn 3.3)
decreases. For example, if the radial variation of crack tip stresses is given by eqn (2.12), then
halving the size of the crack tip elements while retaining the same spatial·integration rule cause
a factor of 2(·-1/.+1) decrease in ~t, or roughly the same factor increase in computational cost.

Our experience in calculating the short-time-transient response, tl tN <€ 0.1, indicated that the
stable time step is a good measure of the time step needed for accuracy. In this regime,
increasing ~t far above At, would lead to problems of accuracy as well as those of stability.
The latter is characterized by large oscillations in stresses or even numerical overflows. This
suggests that implicit time-integration methods such as the Hughes-Taylor algorithm[19] may
not be cost effective for calculating the short-time response. The long-time response that
approaches steady-state conditions would, on the other hand, be best calculated using an
implicit algorithm so that very large time steps can be taken. Recall that for n::: 10 at
tltN ::: 0.66, when steady-state conditions are nearly reached, ~t.ttN == 10-3

•

The calculated short-time (small-seale-creep) amplitude C(t) of the crack tip field relaxed
like 1/t (Figs. 3 and 4) as given in eqn (2.17) for times roughly less than the transition time tT

given in eqn (2.16). In this regime the rate of deformation in the far field is considerably slower
than that at the crack tip (Figs. 5-8). For the shallow edge--crack and, for instance, for the
center-cracked panel in tension with a crack that is short relative to panel width [20], tT ==
t,){n +1). For deeper cracks in tension tr/tN decreases. Numerical integration of eqn (2.13)
within the crack tip region using the finite element results gave values of C(t) that were 5-10%
lower than the Riedel-Rice approximation in eqn (2.17).

Creep straining is a maximum at roughly 60" from the crack plane (Figs. 7-10), while there is
a region ahead of the crack (0.1 :s;; ria :s;; 1.0) where creep strains fall below the nominal values.
This raises the question of whether the crack should extend (locally) straight ahead or in a
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zig-zag, especially when the growth and coalesCence of cavities is the mechanism for crack
extension[l]. The effect of increased straining above the crack tip is countered by the elevation
of hydrostatic tension directly ahead, along 8=0 (see, for instance [21]). Our results for n =3
and 10 predict a 15-20% evelation at ria =0.1 and a S-10% evleation at ria =1.0.

Our results should help to provide guidelines for the correlation of creep crack-growth data,
especially concerning the relevance of Xl or C· (see, for instance [9]). As suaested by Riedel
and Rice[4) and confirmed here, for t < tT then Xl is the relevant loading parameter, while for
t> tT then it is C·. Near the time IT a smooth transition from Xl to C· control occurs. The value of
tT in eqn (2.16) corresponding to particular specimen and loading conditions is determined from the
material constants as well as the solutions to elastic and steady-state creep boundary value
problems (see, for instance [20)). If the latter information is not available for a particular specimen
configuration then estimates of the nominal creep strains as a function of time can be found from a
knowledge of the nominal stresses and creep properties. Recall that for the shallow edge crack
(n +1) tT =< tN or tN, the times when nominal creep and elastic strains are equal. Direct
measurement of the nominal creep strains, which may be difficult, and a comparison with the
nominal elastic strains would also provide the necessary guidelines. This latter approach does not
require material property idealization and, in particular, the neglect of primary creep strains.
Riedel [22] and McClintock and Bassani [2] have discussed the relevant loading parameters when
primary creep is important.
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APPENDIX
Cormeau[7] has shown that numerical spatial integration of the finite element equations (Ret [7], eqn I) coupled with

the rate form of the stress-strain equations (Ref. (7], eqn 5) leads to a system of ordinary different,ial equations (Ref. [71,
eqn 12) for the stresses at the integration points. Specifically, this system arises from: (I) solvins eqn (3.1) for
{Ii} =(Au}/At, which after numerical integration involves stresses at the spatial integration points, (2) solving for iij in eqn
(2.6) at each integration point using the element interpolation functions, and finally(3) substitutinsinto cTiI = E(i1j - if;)
using eqns (21}-(2.4) evaluated at each integration point. The total number of equations in this system equals the number of
integration points times the number of independent stress components. Cormeau then bounds the eipnvalue with the largest
magnitude IA....Ifor this system of ODE's and requires that At, <VIA....I. Except for the faclOr 2(1 +11)/3 in eqn(3.2) the
essence of the approximation for At, can be understood from consideration of a prototype ODE.

Cinsider the ODE

dy +AY'+B=O
dt

(AI)

where A is a constant and B is a function of time. This ODE is a prototype for the aforementioned system of ODE's that
result in elasti¢-power-law creep finite element analysis, where y is a stress-like quantity. q say, A is proportional to
EiJuo' and B is proportional to the rate of applied force divided by element cross-sectional area, palA.

Let y... y(t.) so that y.... , '" y(lt +At). The Euler tangent-method approximation (see Ref. [13}) to eqn (AI) gives the
difference equation

or

Let

y....1 = Yt -At(Ayt +B).

(A2)

(A3)

Y= Y+f (A4)

where f is a local error or perturbation from the "exact" solution Ythat approximately satisfies eqn (A2). Then substitution
of eqn (A4) into eqn (A3) gives

Yt+1 +f.... 1 = Yt +f. - At [A Yt (I +n ft!.9.) + B +O(ft!.9dl. (AS)

If we neglect higher order terms in ft! Y. and take .9 to satisfy eqn (A3) then the propagation of error is given by

f ....1 = f. (1- nA y..-I At). (A6)

Now if we assume that the finite-ciifl'erence marching scheme is stable if errors do not grow, that is if Ift+ll.s;; If.l, then
from eqn (A6)

2 2
At, .s;;::y;o=r_0- "'-A0-1n Y. n Yt

(A7)

With the interpretation suggested above for y anil A the result in eqn (A7) is essentially the one in eqn (3.2). Stability limits
for explicit calculations based on other flow rules can easily be derived in the method outlined above.


